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Stability of discrete solitons in the presence of parametric driving
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In this Brief Report, we consider parametrically driven bright solitons in the vicinity of the anticontinuum
limit. We illustrate the mechanism through which these solitons become unstable due to the collision of the
phase mode with the continuous spectrum, or eigenvalues bifurcating thereof. We show how this mechanism
typically leads to complete destruction of the bright solitary wave.
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I. INTRODUCTION

In the past few years, differential-difference dispersive
equations where the evolution variable is continuum but the
spatial variables are discrete, have been the focus of intense
research efforts [1]. The key reason for the increasing inter-
est in this research direction can be attributed to the wide
range of pertinent applications ranging, from, e.g., the spatial
dynamics of optical beams in coupled waveguide arrays in
nonlinear optics [2], to the temporal evolution of Bose-
Einstein condensates (BECs) in deep, optically induced, lat-
tice potentials in condensed matter physics [3], or even to the
DNA double strand in biophysics [4] among others.

One of the key models that has emerged in all of the
above settings, either as describing, e.g., the envelope wave
of the electric field in the optical setting [5], or describing the
wavefunction at the nodes of the optical lattice in BECs [6],
is the discrete nonlinear Schrodinger (DNLS) equation. This
prototypical lattice model features a dispersive coupling be-
tween nearest neighbors, and a cubic onsite nonlinearity.

The above spatially discrete model bears a number of in-
teresting similarities and differences, in comparison with its
continuum sibling, the famous (integrable in 1-spatial dimen-
sion) nonlinear Schrédinger equation (NLS) [7]. One of the
key differences is the breaking of one of the important in-
variances of the NLS model, namely of the translational in-
variance that is responsible for momentum conservation in
that setting. On the contrary, the discrete model carries an
integer-shift invariance. This has some important implica-
tions for the nature of the solutions of the discrete model. In
fact, it was realized through perturbative calculations [8] and
subsequently more rigorously justified [9] that the principal
(single-humped solitary wave) solutions of the latter model
can only be centered on a lattice site or between two lattice
sites. In the continuum case, the center of the solution is a
free parameter due to the continuum invariance.

On the other hand, one of the important similarities of the
discrete model to the continuum one is the presence of the
so-called phase or gauge invariance (which is associated with
the overall freedom of selecting the solution’s phase). The
conservation law related to this invariance is the one of the
L? (respectively, I?) norm, or “mass” of the solution. This
invariance is the main focal point of the present work. In
particular, we introduce, arguably, the simplest possible per-
turbation that breaks the relevant invariance, in the form of a
parametric drive. The relevance of such a term involving a
perturbation proportional to the complex conjugate of the
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field has been discussed in a variety of earlier works (see,
e.g., [10] and references therein). A specific physical setting
where this type of perturbation arises can be found by look-
ing at the envelope equation of a system of parametrically
driven (undamped) coupled torsion pendula as discussed in
[11] (with the difference that the envelope wave expansion
should be performed in a genuinely discrete setting similarly
to [12] rather than near the continuum limit as in [11]). The
aim of this exposition is to examine how the breaking of this
invariance results in an eigenvalue that bifurcates from the
origin of the spectral plane, when linearizing around the
most fundamental, solitary wave solution. We argue (analyti-
cally and support numerically) that this eigenvalue can lead
to an instability of the solitary wave for an isolated value of
the parametric drive even at the so-called anticontinuum
limit where lattice sites are uncoupled. For nonvanishing
couplings, the same eigenvalue leads to an interval of para-
metric instabilities in the two-parameter space (of parametric
drive versus intersite coupling) that we explore analytically
and numerically. Within this interval, we also elucidate the
typical behavior of the solitary wave solutions, using direct
numerical simulations of relevant unstable waveforms.

Our presentation will be structured as follows. In the next
section, we present our analytical setup and perturbative re-
sults. Then, we compare our analytical findings with the re-
sults of numerical computations. Finally, we summarize our
findings and present our conclusions, as well as motivate
some questions for future study.

II. SETUP AND PERTURBATION ANALYSIS

The model we consider is the perturbed (i.e., parametri-
cally driven) discrete nonlinear Schrédinger equation of the
form

idy=—CAy, — | D> by + Ay + Vb, (1)

where C is the coupling constant between two adjacent sites
of the lattice, Ay, =(,.1—2¢,+d,_,) is the discrete La-
placian, A is the propagation constant in optics or the chemi-
cal potential in BECs, and vy is the strength of the parametric
drive.

We focus our attention on a standing wave profile so that
¢, is time independent. In this case, ¢, satisfies

_CA2¢V£_¢2+A¢n+ 7¢n=0~ (2)
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In the uncoupled [or so-called antlcontlnuum (AC)] limit
of C=0, the solution of (2) is ¢,=0, +\A+'y We examine
here the most fundamental single-hump solitary wave solu-
tions which in the AC limit emanate from a single-site exci-
tation of the form

uS:O, n+#0, u8:v’A+'y. 3)

The continuation of (3) for small coupling C can be
calculated analytically through a perturbative expansion.
By substltutmg 1nto the steady state equation (2) u,
—u +C (1)+C2 ., one can calculate that up to order

O(Cz)
VA+y+CINA+y, n=0,
n=-1,1, (4)

0, n otherwise.

u, =) CINA + 7y,

To examine the stability of the discrete solitary waves of
the form of Eq. (4), we introduce the following linearization
ansatz ¢, =u,+ J¢,. Substituting into (1) yields the following
linearized equation to O(d):

——CAZE,[—2|M”|26,1—M§E_”+AE”+ ’)/6_,,. (5)

Writing €,(¢) = 7,+i£, and assuming that u,, is real, Eq. (5)
gives (see, e.g., [13])

(-l O Nz)rlz)

fn - £—(C) 0 gn gn

where the operators £_(C) and £,(C) are defined as £_(C)

=-CA)-(3u>*~A-7y) and L,(C)=-CA,~(u>*~A+7). The

stability of u, is then determined by the eigenvalues of H.
Let the eigenvalues of H be denoted by iw, which implies

that u, is stable if Im (w)=0. Because (6) is linear, we can

eliminate one of the eigenvectors, for instance §,, from
which we obtain the following eigenvalue problem:

L(C)L(C)n,= o 7,=Q1,. (7)

As before, we expand the eigenvector 7, and the eigen-
value Q as 7,= 7720)+C1721)+(’)(C2) and Q=00+cQ
+O(C?). Substituting into Eq. (7) and identifying coeffi-
cients for consecutive powers of the small parameter C
yields

[£.(0)£(0) - ) = (8)

[£,(0)£_(0) = QO]) = 9)

with
==+ 2uPuM) 2 _(0)

- £,(0)(Ay + 66Dy + Q1] 50 (10)

First, let us consider the order O(1) equation (8). A simple
analysis shows that there are only two eigenvalues, i.e.,
QO=A2—9? and QO=4(A+7y)y. QO=A2—9? has infinite
multiplicity and is related to the phonon band of linear exci-
tations (mathematically, the so-called continuous spectrum)
that will be discussed later. Therefore, our interest is in
QO=4(A + )y that has the normalized eigenvector 7;’(10)=0,
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n#0 and 7, (O) =1. This eigenvalue is the formerly zero eigen-
value due to the phase or gauge invariance of the DNLS
equation in the absence of parametric driving, i.e., its invari-
ance with respect to an arbitrary rotation of the phase (cf. for
both types of eigenvalues with the discussion in Sec. II B of
[13]).

The continuation of the eigenvalue Q?=4(A + )y when
the coupling C is turned on can be calculated from Eq. (9).
Due to the corresponding eigenvector having nflo):O for
n#0, we only need to consider the site n=0. In this case,
f=—8y+0W. The solvability condition of Eq. (9) using, e.g.,
the Fredholm alternative requires f=0 from which we imme-
diately obtain that Q(V=8v. Hence, the smallest eigenvalue
of a one-site discrete soliton solution of Eq. (1) is

Q=4(A+y)y+8yC+0O(C?, (11)

or

— +2\'(A+7)‘}/+2 /‘y—C+ O(Cz) (12)
VA+9y)y

If y=0O(C), Eq. (12) becomes

= +2\'Ay\' +0(0). (13)

Next, we have to proceed with calculating the continuous
spectrum of the operator £,(C)L_(C) [(7)]. When C=0, the
entire phonon band lies at {1=A’—97 as was mentioned be-
fore. When C is increased, the linear excitations start form-
ing a “true band” (which expands as C 7). Using a plane
wave expansion 7,=ae’"+be " yields the dispersion rela-
tion

Q=A+y+2C-2Ccos kK)(A—y+2C—-2C cos k).
(14)

Hence, the continuous band lies between QL=A2— v* (when
k=0) and Q;=A%-*+8C(A+2C) (when k=)

For small vy, the instability of a one-site solitary wave of
(1) is caused by the collision of the phase mode eigenvalue
(11) with an eigenvalue bifurcating from ();. However, here
we assume that the bifurcating eigenvalue does not move
very fast in the spectral plane such that it can be represented
by ;. For large v, the instability is due to the collision of
the phase mode eigenvalue and ). Equating those quanti-
ties will give the critical y as a function of the coupling
constant C (i.e., all intermediate y’s will be resonantly un-
stable due to the collision of the phase eigenvalue with the
phonon band), through

Yo=—3A=1C+ 59N’ +16C(A+C), (1)

Ya=—3A-2C+1V9A2+56CA +96C%.  (16)

The two approximate )/ above coincide at C=0 and
¥'= (\2 1)/2~=0.2071. Notice that at that level the relevant
calculation is analytically exact (i.e., there is no approxima-
tion and the single-site excitation will be unstable for C=0
only for y=7"). While we have not seen this result (of the
critical ") for the single oscillator published elsewhere, it is
rather straightforward to extract from settings and techniques
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FIG. 1. The smallest eigenvalue for two values of 7, namely
v=0.02 and y=0.1. The dashed lines are the approximate analytical
estimate of the relevant frequency from Eq. (12). The lower curves
correspond to y=0.02.

discussed earlier such as the setting of [10] and the analysis
of [14].

III. NUMERICAL RESULTS

We now proceed to test our analytical results for the para-
metrically driven equation numerically. We start by examin-
ing the validity of our analytical prediction for the eigenfre-
quency corresponding to the phase mode which bifurcates
from w=0 because of the presence of the parametric drive
according to the expression (12). Figure 1 shows this predic-
tion as a function of C for two different values of . Clearly,
the prediction is fairly accurate for small C and its range of
validity is wider for smaller values of 7.

We now turn to the examination of the two-parameter
plane of the parametric drive 7y versus the coupling strength
C. Figure 2 provides a full description of the dynamics of the
parametrically driven DNLS model regarding the intervals of
stability/instability of the most fundamental, single-hump
solitary wave solution of the model. The solid lines show the
numerically obtained separatrices between the stable and un-
stable parametric regimes of the model, while the dashed and

A=1
unstable
e
1 2 2 )
C

FIG. 2. The stability-instability region in the two-parameter
space y—C. The solid lines give the numerically obtained separa-
trices, while the dash-dotted and dashed ones the analytical approxi-
mations of Egs. (15) and (16), respectively.
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FIG. 3. The eigenvalue structure of a single-hump solitary wave
for y=0.02 and C=1.0 (top panel), as well as C=1.4 (middle
panel). The bottom panel shows the trajectory of one of the unstable
eigenvalues as C changes.

dash-dotted lines give the analytical prediction for the stabil-
ity range as obtained by the conditions of collision of the
phase mode eigenfrequency with the phonon band from Eqgs.
(15) and (16). Notice that this instability starts out at " at
the AC limit and expands into an instability band, as the
phonon band of Eq. (14) itself expands for increasing C. We
observe that the prediction of Eq. (16) is in very good agree-
ment with the numerical observations for the occurrence of
the instability point. This is because the collision typically
occurs indeed with the upper band edge of the continuous
spectrum (rather than with an eigenvalue bifurcating from it)
and also typically the collision occurs for small C for which
the analytical approximation of Eq. (12) is a very good ap-
proximation. On the other hand, the slightly less satisfactory
agreement with the prediction of Eq. (15) occurs due to the
collision with eigenvalues bifurcating from the lower edge of
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FIG. 4. (Color online) The spatio-temporal evolution of an un-
stable single-hump solitary wave at y=0.02 and C=1.4. The con-
tour plot of square modulus |¢,|* is shown.

the phonon band (see also Fig. 3 below) and also for rela-
tively large C’s for which higher-order terms in the expan-
sion of (12) should be expected to contribute.

Figure 3 illustrates the typical instability scenario for
weak parametric drives (y=0.02 in this figure). As C in-
creases, the eigenvalue that is associated with the phase
mode moves toward the phonon band of linear excitations
(top panel). Eventually for C=1.021, it collides with an ei-
genvalue pair that has bifurcated from the lower band edge.
Due to the opposite Krein signature of these eigenvalues,
their collision leads to an oscillatory instability and the bi-
furcation of a complex quartet of eigenvalues (middle panel).
The Krein signature denotes the curvature of the energy sur-
face associated with a given eigendirection around a station-
ary state—for a relevant discussion see, e.g., [13] and Eq.
(23) therein for a definition; similar definitions arise in Eq.
(5) of [15] or Eq. (14) of [16]. Eventually, as is shown in the
bottom panel, the eigenfrequencies return to the real axis to
restabilize the configuration for C>1.78.

One can also notice from Fig. 2 that there is a minimum
v,, below which the soliton is stable all the way to the con-
tinuum limit. Numerically, 7,,~0.0135. Unfortunately, since
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v,, occurs for large values of C (i.e., for C>1), it cannot be
predicted analytically by our expression 737 (which is no
longer valid in that regime).

We now turn to the examination of the dynamical behav-
ior of the unstable solutions obtained above. The direct nu-
merical evolution of an unstable solution of Eq. (1) is shown
in Fig. 4. We have confirmed that this dynamics is typical of
the unstable parameter range. The figure shows that eventu-
ally the solution becomes subject to the oscillatory instability
that was illustrated in Fig. 3 and is ultimately destroyed com-
pletely. This may also be expected on the basis of the fact
that this is the fundamental coherent structure solution and
for the same parameter set there appears to be no other stable
dynamical state (other than ¢,=0) to which the initial con-
dition may transform.

IV. CONCLUSIONS

In this Brief Report, we visited the topic of parametrically
driven lattices of the NLS type. We have shown that the
dynamics of these lattices is considerably different than those
of the regular DNLS equation. This is due to the driving-
induced bifurcation of the phase mode (associated with the
gauge invariance of the NLS equation). Collision of this
mode with eigenfrequencies stemming from the phonon band
leads to a wide parametric regime of instabilities of the fun-
damental solitary wave in this model. Our perturbative
analysis captures quite accurately the relevant eigenvalue
(especially for weak couplings) and provides a fair estimate
of the instability threshold in the parameter-space of the sys-
tem. The result of the ensuing oscillatory instability is the
destruction of the fundamental soliton, a feature absent from
the regular DNLS model (where this solution is stable for all
parameter values).

It would be interesting to expand the present consider-
ations to other variants of the discrete parametrically driven
model such as its higher-dimensional analogs, the defocusing
case, or also damped variants of these lattice models. Such
considerations are currently under study.
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